

SiGe Integrated Electronics for Extreme Environments

John D. Cressler and the SiGe ETDP Team

School of Electrical and Computer Engineering 777 Atlantic Drive, N.W., Georgia Institute of Technology Atlanta, GA 30332-0250 USA

Tel (404) 894-5161 / E-mail: cressler@ece.gatech.edu

This Work Was Supported by NASA ETDP Under Contract NNL06AA29C and the Georgia Electronic Design Center at Georgia Tech

4th International Planetary Probe Workshop, Pasadena, CA, June 29, 2006

Outline

- Motivation
- SiGe Technology
- Phase I Project Highlights
- The Path Forward
- Summary

The Vision: Space Exploration

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

All Represent Extreme Environments!

Planet	T _{surface} (K)	T _{sphere} (K)
Mercury	100-700	445
Venus	740	325
Earth	288-293	277
Mars	140-300	225
Jupiter	165	123
Saturn	134	90
Uranus	76	63
Neptune	72	50
Pluto	40	44

The Moon: A Classic Extreme Environment!

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Temperature:

- +120C to -180C temperature swings
- 28 day cycles
- -230C in shadowed polar craters!

Radiation:

- 10's of krad (modest)
- (300 krad for Mars)
- single event upset
- solar events

Rover / Robotics

The Big Question...

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Can We Design Mission-Critical Electronic Components That Reliably Operate at Ambient Conditions on the Moon / Mars?

WITH NO WARM BOX?!

Approach:

- Use SiGe BiCMOS (SiGe HBT + CMOS) as our IC Platform
- Plenty of Performance / Commercially Available
- Design Reliable Cryo-Packaging to Support the Circuits
- Develop the Requisite Infrastructure (reliability, models, etc.)
- Assemble a World Class Team To Pull It All Off!

Project Objectives

ETDP: SiGe Integrated Electronics For Extreme Environments

Objective:

Develop and Demonstrate Extreme Environment Electronic Components Required for Distributed Architecture Lunar / Martian Robotic / Vehicular Systems Using SiGe HBT BiCMOS Technology

Extreme Environments (e.g., Lunar):

- +120C (day) to -180C (night) + cycling (main focus)
- radiation (300 krad, SEU, and down to cryo-T)

Major Phase I Project Goals:

- prove SiGe BiCMOS technology for +120C to -180C applications
- build and validate compact models for circuit design (design suite)
- design and demonstrate mission-critical circuit component blocks (library)
- develop and prove the packaging for these circuits
- demonstrate device / package / circuit reliability per NASA specs
- develop a robust maturation path for NASA mission insertion (TRL-6)

A World Class Team!

SA ETDP: SiGe Integrated Electronics For Extreme Environments

Georgia Tech

- John Cressler et al. (PI, devices, circuits)
- Cliff Eckert (program management, reporting)

Auburn University

- Wayne Johnson et al. (packaging); Foster Dai et al. (circuit design); Guofu Niu et al. (profile design)

University of Tennessee

- Ben Blalock et al. (circuit design)

University of Maryland

- Patrick McCluskey et al. (reliability, physics of failure modeling)

Vanderbilt University

- Mike Alles, Robert Reed, et al. (radiation effects, TCAD)

JPL

- Mohammad Mojarradi *et al.* (applications, reliability testing, circuit design)

Boeing

- Leora Peltz et al. (applications, circuit design)

Lynguent / University of Arkansas

- Alan Mantooth et al. (modeling, circuits)

BAE Systems

- Ray Garbos, Rich Berger *et al.* (maturation, applications)

IBM

- Alvin Joseph *et al.* (SiGe technology fabrication)

Part of the RHESE Program M. Watson, PM NASA-MSFC

The SiGe Success Story

- Rapid Generational Evolution (full SiGe BiCMOS)
- Significant In-roads in High-speed Communications ICs
- 100% Silicon Foundry Manufacturing Compatibility (low cost)

SiGe Strained Layer Epitaxy

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

The Idea: **Practice Bandgap Engineering (i.e., nanotechnology)** in the Silicon Material System!

Introduce a small amount of Ge (smaller bandgap) into a Si BJT to ... Selectively tailor the transistor for improved performance!

A SiGe Transistor

SiGe HBTs for Cryo-T

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection (β1)
- field from graded base bandgap decreases base transit time (f-1)
- base bandgap grading produces higher Early voltage (V_A1)

$$\frac{\beta_{SiGe}}{\beta_{si}}\bigg|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma}\,\widetilde{\eta}\,\Delta E_{g,Ge}(grade)/\underline{kT}\,e^{\Delta E_{g,Ge}(0)/\underline{kT}}}{1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{BE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]$$

All kT Factors Are Arranged to Help at Cryo-T!

SiGe HBT Cryo-T Data (POR Ge Profile)

John D. Cressler, 6/26/06

Free Perk: Radiation Tolerance

- Multi-Mrad Total Dose Hardness! (with no intentional hardening!)
- Radiation Hardness Due to Epitaxial Base Structure (not Ge)
 - thin emitter-base spacer + heavily doped extrinsic base + very thin base

John D. Cressler, 6/26/06

SiGe HBT Radiation Tolerance

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

First 77K Proton Irradiation Experiment in SiGe Technology

- 63 MeV protons at UC Davis (NASA-GSFC / DTRA collaboration)
- Radiation Damage Smaller at 77K Than at 300K (great news!)

Device Reliability

SA ETDP: SiGe Integrated Electronics For Extreme Environments

Transistor Reliability Appears to be Fine at Cryo-T

Compact Modeling Tools

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

-180 C

SiGe HBT VBIC Model

Remote Electronics Unit (REU)

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

REU Applications: Distributed Sensors, Processing, Control

<u>Key Attributes</u>: Flexible, Modular, Reconfigurable

Surface Operations

- Robotic Control Distributed (LPRP)
- Control of science instrumentation or resources (LPRP)
- ISRU processing sensing (LPRP) sensors
- Long-term monitoring, low power (Mars Science)
- Infrastructure monitoring of power, communications (LPRP)

Spacecraft for Moon and Mars

- Large lander (LPRP, LSAM)
- CEV, CLV, CaLV, EDS
- Hopper (LPRP)
- Micro-spacecraft

Timeline

Manned Missions

- Exterior climate monitoring
- Life support resources
- Facilities
- Robotic helpers

Science Missions to Outer Planets

- Probe to Europa or Enceladus
- Titan aerobot
- Neptune atmospheric probe

SiGe REU Vision

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Maintain Flexibility!

CRYO I – Did basic primitives needed for Analog conditioning, MUX, D/A, high voltage low current output driver, basic digital NAND, NOR gates, UART

CRYO II – Basic REU A/D (12 bits, 500kS/s), two analog conditioning strings using CRYO I building blocks, higher current - high voltage output driver, more complex digital circuits 16 registers, etc.), standard I/O, plus some additional primitives

Sensor Types

Temperature Strain **Pressure** Acceleration Vibration Acoustic **Heat Flux Position** Rate

OLD – without output capability

NEW - in the connector housing

CRYO-I Circuit Designs (Phase I)

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Phase I CRYO-I Target Circuits

 $(V_{DD} = 3.3V; Temperature = -180C to +120C)$

 General Purpose High-Z Input Operational Amplifier 	UT
Continuous-time Comparator	UT

• Precision Voltage References UT, GT

Sample and Hold Amplifiers

General Purpose Wideband Operational Amplifier

• Precision Low-Drift Amplifier UT

Voltage Controlled Oscillator

AU

• Digital Library

Digital-to-Analog Converter (12 bit)

· Power MOSFETs

• Driver for Power MOSFETs JPL

Under-Voltage Detector

• Analog Multiplexer Lynguent

• Programmable Gain Amplifier Lynguent

• Ramp Generator Boeing

AU

JPL

CRYO-I SiGe Circuit Designs

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Georgia Tech

Tennessee

Auburn

GT / Arkansas

JPL / Boeing / Lynguent

6.0 mm

150 mm² of Real Estate! 6 Design Teams! **Delivered On Schedule!**

Voltage References

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Comparison of Two Ge Profiles

	exp. Ge Cryo	50 nm Ge Cryo
Vref @Vcc=3.3 V	1.176189 @ T= 27 degC	1.172259 @ T= 27 degC
	1.162533 @ T=-180 degC	1.166166 @ T=-180 degC
	1.140775 @ T=-230 degC	1.151884 @ T=-230 degC
TC(ppm/deg C) @ Vcc=3.3 V	10.6 over (-50: 27) degC	7.8 over (-50: 27) degC
	57.6 over (-180: 27) degC	28.1 over (-180: 27) degC
	118.4 over (-230: 27) degC	69.9 over (-230: 27) degC
Line Regulation over (2.5 V-4.3 V)	0.24% @ T=27 degC	0.43% @ T=27 degC
	0.30% @ T=-180 degC	0.93% @ T=-180 degC
	0.25% @ T=27 degC	0.90% @ T=27 degC

World's First 4.3K SiGe Op Amp!

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Output Slewing at 4.3K (POR Ge)

12-bit DAC Functioning at -180C

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Temp=-180C, f_{clk} =3.1MHz, OSR=128, f_{sig} =12KHz, no deglitch filter

Single-ended output

Phase IIA Circuit Targets (Draft)

- Low-power, Multi-channel Instrumentation ADC
 - highly-integrated, power efficient, high sensor count SoCs for data acquisition
 - < 15 mW total power, 12-bit resolution, and 40 kS/s per channel
- High-speed ADC for Specialized Sensors
 - 10-bit resolution, 500-kS/s conversion rate
- Prototype Analog Section of an REU Channel
 - system demonstration using Phase I CRYO-I circuits
- High-side and Low-side Gate Drivers (24 V)
 - refined high voltage transistors
 - motor/actuator control and smart-power systems
- Voltage Regulators
- Bus Interface
- Temperature Sensors
- Refine Selected Phase I Circuits
 - emphasis on low power without sacrificing wide temperature capability
 - various op amps, voltage and current references, comparators, etc.

SiGe System-in-a-Package!

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

Alloy

Major Phase IIA Themes

- Continue To Develop SiGe Technology For Lunar Applications
- Prove Reliability Over Temperature (Devices + Circuits)
- Define Step-2 Circuit Building Blocks (Evolving Library)
- Build an REU Path as a System-in-a-Package Prototype
- Refine Compact Modeling Tools (Modeling Suite)
- Finalize Robust Multi-chip Packaging Platform
- Refine Tools Packaging Reliability, Failure Modeling
- Establish Radiation Tolerance (Devices + Circuits)
- Perform Cycling / Soak Studies of Packaged Circuits
- Pursue Flight Opportunities / Flight Qualification Path(s)

Summary

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

SiGe HBT BiCMOS Technology

- lots of progress many new apps (extreme environments / space)
- record speed of 510 GHz at 4.5K (lots of steam left!)

SiGe For Cryogenic Environments (and wide T swings!)

- major performance metrics improve with cooling (operation to 4K)
- scaling improves things further (> 250 GHz and < 0.5 dB NF at 85K)

SiGe For Radiation Environments

- built-in total-dose hardness (multi-Mrad as fabricated!)
- proven SEU mitigation approaches available if needed

Large NASA Project Developing SiGe for Space Apps

- devices + models + circuits + packages + reliability, etc.

SiGe Is Very Promising for Extreme Environments!

